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On the hidden symmetry of a one-dimensional hydrogen atom 

L S Davtyan, G S Pogosyan, A N Sissakian and V M Ter-Antonyan 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, PO Box 79, 101000 
Moscow, USSR 

Received 1 August 1986 

Abstract. The Fock method is applied to the problem of a one-dimensional hydrogen atom. 
Integral Fock equations are obtained in discrete and continuous spectra; the case of zero 
energy is studied and wavefunctions and normalisation constants are calculated in the 
momentum representation. 

1. Introduction 

The problem of a one-dimensional hydrogen atom ( l H ) ,  i.e. a quantum system with 
the Hamiltonian %= -id2/dx2 - l / J x / ,  originated from the study of the behaviour of 
a hydrogen atom in a strong magnetic field. A rigorous analysis of 1 H in the coordinate 
representation was performed by Loudon (1959). He proved two specific properties: 
(i) the 1H has no normal state with a finite energy, i.e. a fall-off to the centre; and (ii) 
the discrete spectrum of 1H is doubly degenerate. The latter property contradicts a 
conventional idea of non-degeneracy of the discrete spectrum in one-dimensional 
motion (Landau and Lifshitz 1974). A mathematical reason for the spectrum being 
doubly degenerate is that the wavefunctions should have zeros at the singularity of 
potential. Here we shall demonstrate that this degeneracy can also be explained by 
the mechanism of hidden O(2) symmetry in the discrete spectrum. This conclusion is 
drawn on the basis of a method that was developed by Fock (1935) for the hydrogen 
atom and promoted further development of the theory of quantum systems with hidden 
symmetry (Englefield 1972). 

2. Momentum representation 

Stationary states of 1H are described by the Schrodinger equation ( h  = = e = 1): 

W f ( X ) + 2 ( E + 1 / ~ X / ) 4  =o.  (1) 

We multiply equation (1) by 1x1 and make the Fourier transformation 

1 "  
$(x)  =r eiP"a(p) dp. * --oc 

Then, taking into account the formula given by Gelfand and Shilov (1958) 
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in which PV stands for the principal value, we arrive at the integral equation (integral 
means in the sense of principal value) 

U (  p ' )  d p ' =  - 2 a (  p ) .  

3. Fock formalism in the discrete spectrum 

Consider the region of discrete spectrum ( E  <O). Replace - 2 E  by p i  and rewrite 
equation ( 2 )  as 

Lx ,z 2 

f a ( p ' )  dp' = -2a ( p ) .  
7r -m(P'-P) 

(3)  

Introduce an artificial two-dimensional space with Cartesian coordinates ( 7 , t )  and 
consider in it a circle with radius po at the origin of coordinates (see figure 1). From 
figure 1 it is seen that 

p = po  tan q / 2 .  (4) 
Mapping (4) maps the axis 
Applying (4), equation (3) may be written in the form 

onto a circle and is called a stereographic projection. 

where the notation 

has been introduced. Now let us analyse equation ( 5 ) .  We shall start with a formal 
expansion 

-pol 

Figure 1. Stereographic projection in the discrete spectrum. 
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Multiplying (7) by e-’” y (  1 -cos y )  and integrating over dcp in the limits (0,27r) one 
may derive a three-term recurrence relation 

2a,.0=2cm.-c,,-I -c,’+I 

c, = co-Iml 

that with the condition c-, = c,  leads to the formula 

where 

C O =  fo2v d y  
1 -cos y’ 

The latter integral is divergent. Nevertheless, using a formal procedure and with the 
identity (Gelfand and Shilov 1958) 

cc f elmy=27r c a(y-27rm) 
m = - x  m = - x  

we obtain 
5 a: 1 

=c027r C a(y-27rm)-  C lm)e imY.  
1 -cos y m=--oc m = - 5  

Since further integration in ( 5 )  is carried out in the sense of principal value, then 
y # 27rm and the term containing a divergent constant co gives no contribution, i.e. 

X 

= - 1m1 eimY. 
1 

PV 
1-cos y ,,,=-m 

By using this formula it may be easily shown that equation ( 5 )  has a non-trivial solution 
only when pa=  l/lml, which leads to the following discrete spectrum of 1H found in 
Landau and Lifshitz (1974): 

E,,, = -1/2m2 m =0,  i l ,  *2,. . .. (8) 
According to this formula, fall-off onto the centre and a double degeneration do  indeed 
take place. The functions $(cp)  are of the form 

+‘,“(cp) = c e*im‘+ m = l , 2 , 3  , . . . .  (9) 
Equation (5) is invariant under the shift cp + cp + cpo, p‘-b cp’+ cpo, which testifies to the 
hidden 1H symmetry, characteristic of O(2). 

4. Calculation of the normalisation constant in the discrete spectrum 

The constant c in (9) is determined from the normalisation condition 
cc 

$$do= {-= a ~ ~ ’ ’ ( p ) a ~ ’ ( p )  d p  = apop;. 
From formulae (6) and (9) it follows that 

Considering that 
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and 

we arrive at 

which, with 
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the formula 

condition (lo),  gives 

= (2/T)1/2(m)-3/2.  

5. Fock formalism in the continuous spectrum 

Let us now discuss the continuous spectrum ( E  > 0). We introduce the notation p i  = 2 E 
and rewrite equation (2) in the form 

oc I2 2 1 a ( p ’ )  dp‘ = -2a ( p ) .  
77 - m ( P ’ - P )  

Consider in the two-dimensional space ( 7 , e )  the hyperbola 

, $ 2 - 7 7 2 = p ;  (=  * ( p i + $ ) ?  (12) 

There are two regimes of the stereographic projection, depending on whether p E 

( - p o ,  p o )  or p E 1-00, -po;  po ,  CO[.  The first of the regions will be denoted by Din and 
the second by Do,, . For p E Din the regime of projection is shown in figure 2. The 

Figure 2. Mapping of the range of momentum p onto the upper branch of the hyperbola 
6-  7 2  = p:. 
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region Din is mapped into an upper branch of the hyperbola (12) .  From figure 2 it is 
seen that despite the sign of p the relation 

P = P o r ] / ( 5 + P o )  PED, ,  (13 )  

holds. It is convenient to pass to the variable p (-CO < p < CO), i.e. to write the equation 
of the hyperbola upper branch in the parametric form 

r] = p o  sinh p ( = P O  cosh p. 

Then the mapping ( 1 3 )  acquires the compact form 

p = po tanhip PEDin .  (14) 

The region Do,, transforms into a lower branch of the hyperbola. In this case the 
stereographic projection is shown in figure 3 and it leads to the connection 

P = P o r ] / ( S + P o )  P E Do,, 9 (15)  

In formula (15 )  ( < - p o ,  whereas in ( 1 3 )  ( > p o .  Formula ( 1 5 )  is conveniently para- 
metrised by ( --CO < p < CO) :  

7 = po  sinh p 6 = -PO cosh p. 

In terms of p, the hyperbola lower branch is defined by the equation 

p = -PO coth i p  P E DO", . (16) 

By using mappings (14) and (15) it can be shown that equation (11) splits into the 

' , r l  

Figure 3. Mapping of the range of momentum p onto the lower branch of the hyperbola 
6 - 7 2  = p i .  
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system of two integral equations 

where 

(19) 

Equations (17) and (18) are invariant under translations p‘+ p ‘+  po and p + p + po, 
which shows the existence of a hidden symmetry group. Now we proceed to solve the 
system (17) and  (18). We shall need the two integrals 

a ( PO t anh ip  a(  -po coth t p )  
A ( p )  = Cosh2 i p  B ( p )  = sinh2 i p  ‘ 

elqp d p  
- -“4 coth f ~ q .  I ,  - 

The first is taken from tables by Gradshtein and  Ryzhyk (1963) and  the second is 
calculated by the formula (Prudnikov et a1 1981) 

(cosh n b  - 
sinh r b  cosh a 

e-ibz d z  iT eiab 
- _ -  

sinh z + sinh a 

Now we expand the functions A ( p )  and  B(p) into the Fourier integrals: 
X 3c 

A ( p )  = [ ( ~ ( 7 )  eiT” d 7  B ( p )  = P ( T )  eir” dr. 
-X -cc 

Inserting these expansions into equations (17) and  (18) and  using formulae (20) and  
(21) we arrive at a system of homogeneous equations from which we conclude that T 

may assume only two values, 7 = *l/po,  and the functions A ( p )  and p ( p )  take the form 

Passing to the initial wavefunctions a ( p )  by formula (19) we obtain 

These functions can be expressed through the variable p :  

At the points p = *po  the functions a E ’ ( p )  cannot be determined. 
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6. Calculation of the normalisation constant in the continuous spectrum 

For definiteness we assume that p ; >  po and split the region of p into five subregions: 

region E,  
El = ( -00, -PA) ,  El = ( -PA,  -p0), E ,  = ( - p 0 ,  po l ,  E4 = ( p 0 ,  pb), E5 = ( P A ,  a). In the 

I€, a:!*)( p ) a K ’ (  p )  dp = lim u: i*)(  p ) a E ’  dp. 
A - r n  IA - A  

In U $ ’ (  p ) ,  replacing tanh-’( p / p A )  by tanh-’( p / p o )  and separating the difference 
po - p ; ,  we obtain 

m 2 p ;  
a ; i * ) ( p b : ’ ( p )  dp =- 6 (  Pb -Po)  2 

and I E2+ €4 a:!*’( p)a: ’ (  p )  d p  = h i + - d  lim AZ+-Pi ,  lim ( I * ~ + s * : ? ) u a : ~ ’ ( P , u K ) ( P )  dp. 

Considering that at ph = p o ,  tanh-’( p / p b )  -- tanh-’( p / p o ) ,  it can easily be shown that 
the latter integral vanishes. Finally, 

2 3 2r r lp  a ; ~ * ’ ( p ) a ~ ’ ( p )  dp = t r c  p o e  f16(po-pb) .  I € , + E 1  

I-: 
I-= 

As a result, we have 

a ; ~ * ’ ( p ) a ~ ’ ( p )  dp = $7rc2p;(l +e2””+~)6(po-pb).  

Taking the normalisation condition 
ic 

a ; ~ * ’ ( ~ ) a ~ ’ ( p )  dp =2776(po-~b) 

we obtain the following normalisation constant: 

 pi'*(^ + e  ) 
1 

277 lP ,  I /2 ’  C =  

7. The case E = O  

In this case equation (2)  becomes 

Here, instead of the stereographic projection, we make the change 5 = 2 / p  and arrive 
at the equation 
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From the formula (Gelfand and Shilov 1958) 

it follows that equation (22) has the solutions 

+(*l(t) = c e*i' 

and, consequently, 

l P 2 .  a & ) ( p )  = e * 2 i / ~  

8. Conclusion 

The main results are as follows: the Schrodinger equation is obtained for a one- 
dimensional (1 H) hydrogen atom in the momentum representation, the stereographic 
projection is analysed for E < 0 and E > 0, the Fock equations are found for l H ,  
hidden symmetry is revealed, wavefunctions in the momentum space are found, the 
method of calculating normalisation constants is shown and  a special case E = 0 is 
examined. This indicates that a one-dimensional hydrogen atom can be described by 
the known scheme (Popov 1967, Bander and  Itzykson 1966, Shibuya and  Wolfman 
1965) of the theory of hidden symmetry of hydrogen systems of dimensionality n Z- 2. 
The only specific feature is the absence of the ground state with a finite energy. 
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